Cargando…
Toward a microbial Neolithic revolution in buildings
The Neolithic revolution—the transition of our species from hunter and gatherer to cultivator—began approximately 14,000 years ago and is essentially complete for macroscopic food. Humans remain largely pre-Neolithic in our relationship with microbes but starting with the gut we continue our hundred...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810507/ https://www.ncbi.nlm.nih.gov/pubmed/27021307 http://dx.doi.org/10.1186/s40168-016-0157-2 |
_version_ | 1782423825492738048 |
---|---|
author | Thaler, David S. |
author_facet | Thaler, David S. |
author_sort | Thaler, David S. |
collection | PubMed |
description | The Neolithic revolution—the transition of our species from hunter and gatherer to cultivator—began approximately 14,000 years ago and is essentially complete for macroscopic food. Humans remain largely pre-Neolithic in our relationship with microbes but starting with the gut we continue our hundred-year project of approaching the ability to assess and cultivate benign microbiomes in our bodies. Buildings are analogous to the body and it is time to ask what it means to cultivate benign microbiomes in our built environment. A critical distinction is that we have not found, or invented, niches in buildings where healthful microbial metabolism occurs and/or could be cultivated. Key events affecting the health and healthfulness of buildings such as a hurricane leading to a flood or a burst pipe occur only rarely and unpredictably. The cause may be transient but the effects can be long lasting and, e.g., for moisture damage, cumulative. Non-invasive “building tomography” could find moisture and “sentinel microbes” could record the integral of transient growth. “Seed” microbes are metabolically inert cells able to grow when conditions allow. All microbes and their residue present actinic molecules including immunological epitopes (molecular shapes). The fascinating hygiene and microbial biodiversity hypotheses propose that a healthy immune system requires exposure to a set of microbial epitopes that is rich in diversity. A particular conjecture is that measures of the richness of diversity derived from microbiome next-generation sequencing (NGS) can be mechanistically coupled to—rather than merely correlated with some measures of—human health. These hypotheses and conjectures inspire workers and funders but an alternative is also consequent to the first Neolithic revolution: That the genetic uniformity of contemporary foods may also decrease human exposure to molecular biodiversity in a heath-relevant manner. Understanding the consequences—including the unintended consequences of the first Neolithic revolution—will inform and help us benignly implement the second—the microbial—Neolithic revolution. |
format | Online Article Text |
id | pubmed-4810507 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-48105072016-03-30 Toward a microbial Neolithic revolution in buildings Thaler, David S. Microbiome Review The Neolithic revolution—the transition of our species from hunter and gatherer to cultivator—began approximately 14,000 years ago and is essentially complete for macroscopic food. Humans remain largely pre-Neolithic in our relationship with microbes but starting with the gut we continue our hundred-year project of approaching the ability to assess and cultivate benign microbiomes in our bodies. Buildings are analogous to the body and it is time to ask what it means to cultivate benign microbiomes in our built environment. A critical distinction is that we have not found, or invented, niches in buildings where healthful microbial metabolism occurs and/or could be cultivated. Key events affecting the health and healthfulness of buildings such as a hurricane leading to a flood or a burst pipe occur only rarely and unpredictably. The cause may be transient but the effects can be long lasting and, e.g., for moisture damage, cumulative. Non-invasive “building tomography” could find moisture and “sentinel microbes” could record the integral of transient growth. “Seed” microbes are metabolically inert cells able to grow when conditions allow. All microbes and their residue present actinic molecules including immunological epitopes (molecular shapes). The fascinating hygiene and microbial biodiversity hypotheses propose that a healthy immune system requires exposure to a set of microbial epitopes that is rich in diversity. A particular conjecture is that measures of the richness of diversity derived from microbiome next-generation sequencing (NGS) can be mechanistically coupled to—rather than merely correlated with some measures of—human health. These hypotheses and conjectures inspire workers and funders but an alternative is also consequent to the first Neolithic revolution: That the genetic uniformity of contemporary foods may also decrease human exposure to molecular biodiversity in a heath-relevant manner. Understanding the consequences—including the unintended consequences of the first Neolithic revolution—will inform and help us benignly implement the second—the microbial—Neolithic revolution. BioMed Central 2016-03-29 /pmc/articles/PMC4810507/ /pubmed/27021307 http://dx.doi.org/10.1186/s40168-016-0157-2 Text en © Thaler. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Thaler, David S. Toward a microbial Neolithic revolution in buildings |
title | Toward a microbial Neolithic revolution in buildings |
title_full | Toward a microbial Neolithic revolution in buildings |
title_fullStr | Toward a microbial Neolithic revolution in buildings |
title_full_unstemmed | Toward a microbial Neolithic revolution in buildings |
title_short | Toward a microbial Neolithic revolution in buildings |
title_sort | toward a microbial neolithic revolution in buildings |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810507/ https://www.ncbi.nlm.nih.gov/pubmed/27021307 http://dx.doi.org/10.1186/s40168-016-0157-2 |
work_keys_str_mv | AT thalerdavids towardamicrobialneolithicrevolutioninbuildings |