Cargando…
A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction
Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV)...
Autores principales: | Lu, Hongyang, Wei, Jingbo, Liu, Qiegen, Wang, Yuhao, Deng, Xiaohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811095/ https://www.ncbi.nlm.nih.gov/pubmed/27110235 http://dx.doi.org/10.1155/2016/7512471 |
Ejemplares similares
-
A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction
por: Liu, Qiegen, et al.
Publicado: (2014) -
Temperature Field Reconstruction Method for Acoustic Tomography Based on Multi-Dictionary Learning
por: Wei, Yuankun, et al.
Publicado: (2022) -
Harmonization of diffusion MRI data sets with adaptive dictionary learning
por: St‐Jean, Samuel, et al.
Publicado: (2020) -
An Improved Total Variation Minimization Method Using Prior Images and Split-Bregman Method in CT Reconstruction
por: Deng, Luzhen, et al.
Publicado: (2016) -
MRI Reconstruction Using Markov Random Field and Total Variation as Composite Prior
por: Panić, Marko, et al.
Publicado: (2020)