Cargando…
KIT over-expression by p55PIK-PI3K leads to Imatinib-resistance in patients with gastrointestinal stromal tumors
Imatinib is the first-line drug for gastrointestinal stromal tumors (GISTs), as mutated KIT is closely associated with the occurrence of GIST. However, Imatinib resistance (IMA-resistance) occurs inevitably in most GIST patients. Although the over-expression of KIT in GIST is one of the major factor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811466/ https://www.ncbi.nlm.nih.gov/pubmed/26587973 |
Sumario: | Imatinib is the first-line drug for gastrointestinal stromal tumors (GISTs), as mutated KIT is closely associated with the occurrence of GIST. However, Imatinib resistance (IMA-resistance) occurs inevitably in most GIST patients. Although the over-expression of KIT in GIST is one of the major factors contributing to IMA-resistance, the underlying mechanism is still unclear. In this study, we demonstrate that p55PIK, an isoform of phosphoinositide 3-kinase (PI3K), increases KIT expression, leading to IMA-resistance in GISTs by activating NF-κB signaling pathway. Furthermore, down-regulation of p55PIK significantly decreases KIT expression and re-sensitizes IMA-resistance-GIST cells to Imatinib in vitro and in vivo. Interestingly, the expression of both p55PIK and KIT proteins is significantly increased in tumor samples from IMA-resistance-GIST patients, suggesting that p55PIK up-regulation may be important for IMA-resistance in the clinical setting. Altogether, our data provide evidence that p55PIK-PI3K signaling can contribute to IMA-resistance in GIST by increasing KIT expression. Moreover, p55PIK may be a novel potential drug target for treating tumors that develop IMA-resistance. |
---|