Cargando…
A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase
DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811467/ https://www.ncbi.nlm.nih.gov/pubmed/26595527 |
_version_ | 1782423965685252096 |
---|---|
author | Sakurikar, Nandini Thompson, Ruth Montano, Ryan Eastman, Alan |
author_facet | Sakurikar, Nandini Thompson, Ruth Montano, Ryan Eastman, Alan |
author_sort | Sakurikar, Nandini |
collection | PubMed |
description | DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients. |
format | Online Article Text |
id | pubmed-4811467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-48114672016-04-25 A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase Sakurikar, Nandini Thompson, Ruth Montano, Ryan Eastman, Alan Oncotarget Research Paper DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients. Impact Journals LLC 2015-11-22 /pmc/articles/PMC4811467/ /pubmed/26595527 Text en Copyright: © 2016 Sakurikar et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Sakurikar, Nandini Thompson, Ruth Montano, Ryan Eastman, Alan A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase |
title | A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase |
title_full | A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase |
title_fullStr | A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase |
title_full_unstemmed | A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase |
title_short | A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase |
title_sort | subset of cancer cell lines is acutely sensitive to the chk1 inhibitor mk-8776 as monotherapy due to cdk2 activation in s phase |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811467/ https://www.ncbi.nlm.nih.gov/pubmed/26595527 |
work_keys_str_mv | AT sakurikarnandini asubsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT thompsonruth asubsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT montanoryan asubsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT eastmanalan asubsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT sakurikarnandini subsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT thompsonruth subsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT montanoryan subsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase AT eastmanalan subsetofcancercelllinesisacutelysensitivetothechk1inhibitormk8776asmonotherapyduetocdk2activationinsphase |