Cargando…
Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives
Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811587/ https://www.ncbi.nlm.nih.gov/pubmed/27023871 http://dx.doi.org/10.1371/journal.pone.0152154 |
_version_ | 1782424000855539712 |
---|---|
author | An, Feifei Chen, Ting Stéphanie, Djabou Mouafi Astride Li, Kaimian Li, Qing X. Carvalho, Luiz J. C. B. Tomlins, Keith Li, Jun Gu, Bi Chen, Songbi |
author_facet | An, Feifei Chen, Ting Stéphanie, Djabou Mouafi Astride Li, Kaimian Li, Qing X. Carvalho, Luiz J. C. B. Tomlins, Keith Li, Jun Gu, Bi Chen, Songbi |
author_sort | An, Feifei |
collection | PubMed |
description | Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena. |
format | Online Article Text |
id | pubmed-4811587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48115872016-04-05 Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives An, Feifei Chen, Ting Stéphanie, Djabou Mouafi Astride Li, Kaimian Li, Qing X. Carvalho, Luiz J. C. B. Tomlins, Keith Li, Jun Gu, Bi Chen, Songbi PLoS One Research Article Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena. Public Library of Science 2016-03-29 /pmc/articles/PMC4811587/ /pubmed/27023871 http://dx.doi.org/10.1371/journal.pone.0152154 Text en © 2016 An et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article An, Feifei Chen, Ting Stéphanie, Djabou Mouafi Astride Li, Kaimian Li, Qing X. Carvalho, Luiz J. C. B. Tomlins, Keith Li, Jun Gu, Bi Chen, Songbi Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives |
title | Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives |
title_full | Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives |
title_fullStr | Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives |
title_full_unstemmed | Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives |
title_short | Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives |
title_sort | domestication syndrome is investigated by proteomic analysis between cultivated cassava (manihot esculenta crantz) and its wild relatives |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811587/ https://www.ncbi.nlm.nih.gov/pubmed/27023871 http://dx.doi.org/10.1371/journal.pone.0152154 |
work_keys_str_mv | AT anfeifei domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT chenting domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT stephaniedjaboumouafiastride domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT likaimian domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT liqingx domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT carvalholuizjcb domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT tomlinskeith domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT lijun domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT gubi domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives AT chensongbi domesticationsyndromeisinvestigatedbyproteomicanalysisbetweencultivatedcassavamanihotesculentacrantzanditswildrelatives |