Cargando…
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
Network of neurons in the brain apply—unlike processors in our current generation of computer hardware—an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations pro...
Autores principales: | Jonke, Zeno, Habenschuss, Stefan, Maass, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811945/ https://www.ncbi.nlm.nih.gov/pubmed/27065785 http://dx.doi.org/10.3389/fnins.2016.00118 |
Ejemplares similares
-
Stochastic Computations in Cortical Microcircuit Models
por: Habenschuss, Stefan, et al.
Publicado: (2013) -
Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems
por: Fonseca Guerra, Gabriel A., et al.
Publicado: (2017) -
Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition
por: Bill, Johannes, et al.
Publicado: (2015) -
An event-based architecture for solving constraint satisfaction problems
por: Mostafa, Hesham, et al.
Publicado: (2015) -
Solving the spike feature information vanishing problem in spiking deep Q network with potential based normalization
por: Sun, Yinqian, et al.
Publicado: (2022)