Cargando…
Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
BACKGROUND: Radiomics can quantify tumor phenotypic characteristics non-invasively by applying feature algorithms to medical imaging data. In this study of lung cancer patients, we investigated the association between radiomic features and the tumor histologic subtypes (adenocarcinoma and squamous c...
Autores principales: | Wu, Weimiao, Parmar, Chintan, Grossmann, Patrick, Quackenbush, John, Lambin, Philippe, Bussink, Johan, Mak, Raymond, Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811956/ https://www.ncbi.nlm.nih.gov/pubmed/27064691 http://dx.doi.org/10.3389/fonc.2016.00071 |
Ejemplares similares
-
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Machine Learning methods for Quantitative Radiomic Biomarkers
por: Parmar, Chintan, et al.
Publicado: (2015) -
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
por: Hosny, Ahmed, et al.
Publicado: (2018) -
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
por: Aerts, Hugo J. W. L., et al.
Publicado: (2014)