Cargando…

Establishment of Relational Model of Congenital Heart Disease Markers and GO Functional Analysis of the Association between Its Serum Markers and Susceptibility Genes

Purpose. The purpose of present study was to construct the best screening model of congenital heart disease serum markers and to provide reference for further prevention and treatment of the disease. Methods. Documents from 2006 to 2014 were collected and meta-analysis was used for screening suscept...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Min, Zhao, Luosha, Yuan, Jiaying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812235/
https://www.ncbi.nlm.nih.gov/pubmed/27118988
http://dx.doi.org/10.1155/2016/9506829
Descripción
Sumario:Purpose. The purpose of present study was to construct the best screening model of congenital heart disease serum markers and to provide reference for further prevention and treatment of the disease. Methods. Documents from 2006 to 2014 were collected and meta-analysis was used for screening susceptibility genes and serum markers closely related to the diagnosis of congenital heart disease. Data of serum markers were extracted from 80 congenital heart disease patients and 80 healthy controls, respectively, and then logistic regression analysis and support vector machine were utilized to establish prediction models of serum markers and Gene Ontology (GO) functional annotation. Results. Results showed that NKX2.5, GATA4, and FOG2 were susceptibility genes of congenital heart disease. CRP, BNP, and cTnI were risk factors of congenital heart disease (p < 0.05); cTnI, hs-CRP, BNP, and Lp(a) were significantly close to congenital heart disease (p < 0.01). ROC curve indicated that the accuracy rate of Lp(a) and cTnI, Lp(a) and BNP, and BNP and cTnI joint prediction was 93.4%, 87.1%, and 97.2%, respectively. But the detection accuracy rate of the markers' relational model established by support vector machine was only 85%. GO analysis suggested that NKX2.5, GATA4, and FOG2 were functionally related to Lp(a) and BNP. Conclusions. The combined markers model of BNP and cTnI had the highest accuracy rate, providing a theoretical basis for the diagnosis of congenital heart disease.