Cargando…

Modelling of the Electric Field Distribution in Deep Transcranial Magnetic Stimulation in the Adolescence, in the Adulthood, and in the Old Age

In the last few years, deep transcranial magnetic stimulation (dTMS) has been used for the treatment of depressive disorders, which affect a broad category of people, from adolescents to aging people. To facilitate its clinical application, particular shapes of coils, including the so-called Hesed c...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiocchi, Serena, Longhi, Michela, Ravazzani, Paolo, Roth, Yiftach, Zangen, Abraham, Parazzini, Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812269/
https://www.ncbi.nlm.nih.gov/pubmed/27069502
http://dx.doi.org/10.1155/2016/9039613
Descripción
Sumario:In the last few years, deep transcranial magnetic stimulation (dTMS) has been used for the treatment of depressive disorders, which affect a broad category of people, from adolescents to aging people. To facilitate its clinical application, particular shapes of coils, including the so-called Hesed coils, were designed. Given their increasing demand and the lack of studies which accurately characterize their use, this paper aims to provide a picture of the distribution of the induced electric field in four realistic human models of different ages and gender. In detail, the electric field distributions were calculated by using numerical techniques in the brain structures potentially involved in the progression of the disease and were quantified in terms of both amplitude levels and focusing power of the distribution. The results highlight how the chosen Hesed coil (H7 coil) is able to induce the maxima levels of E mainly in the prefrontal cortex, particularly for the younger model. Moreover, growing levels of induced electric fields with age were found by going in deep in the brain, as well as a major capability to penetrate in the deepest brain structures with an electric field higher than 50%, 70%, and 90% of the peak found in the cortex.