Cargando…

Charge carrier coherence and Hall effect in organic semiconductors

Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, H. T., Gartstein, Y. N., Podzorov, V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812289/
https://www.ncbi.nlm.nih.gov/pubmed/27025354
http://dx.doi.org/10.1038/srep23650
Descripción
Sumario:Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.