Cargando…

Activity of Gallium Meso- and Protoporphyrin IX against Biofilms of Multidrug-Resistant Acinetobacter baumannii Isolates

Acinetobacter baumannii is a challenging pathogen due to antimicrobial resistance and biofilm development. The role of iron in bacterial physiology has prompted the evaluation of iron-modulation as an antimicrobial strategy. The non-reducible iron analog gallium(III) nitrate, Ga(NO(3))(3), has been...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, David, Garcia, Rebecca A., Akers, Kevin S., Mende, Katrin, Murray, Clinton K., Wenke, Joseph C., Sanchez, Carlos J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812380/
https://www.ncbi.nlm.nih.gov/pubmed/26999163
http://dx.doi.org/10.3390/ph9010016
Descripción
Sumario:Acinetobacter baumannii is a challenging pathogen due to antimicrobial resistance and biofilm development. The role of iron in bacterial physiology has prompted the evaluation of iron-modulation as an antimicrobial strategy. The non-reducible iron analog gallium(III) nitrate, Ga(NO(3))(3), has been shown to inhibit A. baumannii planktonic growth; however, utilization of heme-iron by clinical isolates has been associated with development of tolerance. These observations prompted the evaluation of iron-heme sources on planktonic and biofilm growth, as well as antimicrobial activities of gallium meso- and protoporphyrin IX (Ga-MPIX and Ga-PPIX), metal heme derivatives against planktonic and biofilm bacteria of multidrug-resistant (MDR) clinical isolates of A. baumannii in vitro. Ga(NO(3))(3) was moderately effective at reducing planktonic bacteria (64 to 128 µM) with little activity against biofilms (≥512 µM). In contrast, Ga-MPIX and Ga-PPIX were highly active against planktonic bacteria (0.25 to 8 µM). Cytotoxic effects in human fibroblasts were observed following exposure to concentrations exceeding 128 µM of Ga-MPIX and Ga-PPIX. We observed that the gallium metal heme conjugates were more active against planktonic and biofilm bacteria, possibly due to utilization of heme-iron as demonstrated by the enhanced effects on bacterial growth and biofilm formation.