Cargando…
Multiscale CNNs for Brain Tumor Segmentation and Diagnosis
Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on...
Autores principales: | Zhao, Liya, Jia, Kebin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812495/ https://www.ncbi.nlm.nih.gov/pubmed/27069501 http://dx.doi.org/10.1155/2016/8356294 |
Ejemplares similares
-
Malicious Code Variant Identification Based on Multiscale Feature Fusion CNNs
por: Wang, Shuo, et al.
Publicado: (2021) -
MR-CT multi-atlas registration guided by fully automated brain structure segmentation with CNNs
por: Walluscheck, Sina, et al.
Publicado: (2022) -
Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images
Publicado: (2022) -
DMENet: Diabetic Macular Edema diagnosis using Hierarchical Ensemble of CNNs
por: Singh, Rajeev Kumar, et al.
Publicado: (2020) -
A Comparative Analysis of Visual Encoding Models Based on Classification and Segmentation Task-Driven CNNs
por: Yu, Ziya, et al.
Publicado: (2020)