Cargando…

Mesenchymal Stem Cells Increase Neo-Angiogenesis and Albumin Production in a Liver Tissue-Engineered Engraftment

The construction of a three-dimensional (3D) liver tissue is limited by many factors; one of them is the lack of vascularization inside the tissue-engineered construct. An engineered liver pocket-scaffold able to increase neo-angiogenesis in vivo could be a solution to overcome these limitations. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Carraro, Amedeo, Buggio, Maurizio, Gardin, Chiara, Tedeschi, Umberto, Ferroni, Letizia, Zavan, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813233/
https://www.ncbi.nlm.nih.gov/pubmed/26985891
http://dx.doi.org/10.3390/ijms17030374
Descripción
Sumario:The construction of a three-dimensional (3D) liver tissue is limited by many factors; one of them is the lack of vascularization inside the tissue-engineered construct. An engineered liver pocket-scaffold able to increase neo-angiogenesis in vivo could be a solution to overcome these limitations. In this work, a hyaluronan (HA)-based scaffold enriched with human mesenchymal stem cells (hMSCs) and rat hepatocytes was pre-conditioned in a bioreactor system, then implanted into the liver of rats. Angiogenesis and hepatocyte metabolic functions were monitored. The formation of a de novo vascular network within the HA-based scaffold, as well as an improvement in albumin production by the implanted hepatocytes, were detected. The presence of hMSCs in the HA-scaffold increased the concentration of growth factors promoting angiogenesis inside the graft. This event ensured a high blood vessel density, coupled with a support to metabolic functions of hepatocytes. All together, these results highlight the important role played by stem cells in liver tissue-engineered engraftment.