Cargando…
Pathology Tissue-quantitative Mass Spectrometry Analysis to Profile Histone Post-translational Modification Patterns in Patient Samples
Histone post-translational modifications (hPTMs) generate a complex combinatorial code that has been implicated with various pathologies, including cancer. Dissecting such a code in physiological and diseased states may be exploited for epigenetic biomarker discovery, but hPTM analysis in clinical s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813706/ https://www.ncbi.nlm.nih.gov/pubmed/26463340 http://dx.doi.org/10.1074/mcp.M115.054510 |
Sumario: | Histone post-translational modifications (hPTMs) generate a complex combinatorial code that has been implicated with various pathologies, including cancer. Dissecting such a code in physiological and diseased states may be exploited for epigenetic biomarker discovery, but hPTM analysis in clinical samples has been hindered by technical limitations. Here, we developed a method (PAThology tissue analysis of Histones by Mass Spectrometry - PAT-H-MS) that allows to perform a comprehensive, unbiased and quantitative MS-analysis of hPTM patterns on formalin-fixed paraffin-embedded (FFPE) samples. In pairwise comparisons, histone extracted from formalin-fixed paraffin-embedded tissues showed patterns similar to fresh frozen samples for 24 differentially modified peptides from histone H3. In addition, when coupled with a histone-focused version of the super-SILAC approach, this method allows the accurate quantification of modification changes among breast cancer patient samples. As an initial application of the PAThology tissue analysis of Histones by Mass Spectrometry method, we analyzed breast cancer samples, revealing significant changes in histone H3 methylation patterns among Luminal A-like and Triple Negative disease subtypes. These results pave the way for retrospective epigenetic studies that combine the power of MS-based hPTM analysis with the extensive clinical information associated with formalin-fixed paraffin-embedded archives. |
---|