Cargando…
Dialysis membrane: from convection to adsorption
Although patients undergoing dialysis have a complex illness, there are compelling reasons to believe that the inadequate removal of organic waste is an important contributing factor to the illness itself. This paper focuses on the transport phenomena that occur within a dialyser. An attempt is made...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813820/ https://www.ncbi.nlm.nih.gov/pubmed/27045937 http://dx.doi.org/10.1093/ndtplus/sfq035 |
Sumario: | Although patients undergoing dialysis have a complex illness, there are compelling reasons to believe that the inadequate removal of organic waste is an important contributing factor to the illness itself. This paper focuses on the transport phenomena that occur within a dialyser. An attempt is made to clarify how transport phenomena are related to the performance of a dialysis session and how they depend on the membrane characteristics. Our study offers some discussion points on the complex issue of defining what the best parameters could be in comparing the efficiency of different membranes. The new high-flux dialysers have improved larger-molecule clearance and biocompatibility. Membrane performance is a very hard process to evaluate, and different membranes can only be compared by establishing adequate points of comparison. At the same time, the points of comparison themselves may change depending on the type of co-morbidities of the specific patient who is considered for membrane selection. This editorial (together with all the papers presented in this issue) seeks to focus on the membrane's own merits in improving the dialysis therapy. |
---|