Cargando…

Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-comput...

Descripción completa

Detalles Bibliográficos
Autores principales: Batres-Mendoza, Patricia, Montoro-Sanjose, Carlos R., Guerra-Hernandez, Erick I., Almanza-Ojeda, Dora L., Rostro-Gonzalez, Horacio, Romero-Troncoso, Rene J., Ibarra-Manzano, Mario A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813911/
https://www.ncbi.nlm.nih.gov/pubmed/26959029
http://dx.doi.org/10.3390/s16030336
_version_ 1782424342993305600
author Batres-Mendoza, Patricia
Montoro-Sanjose, Carlos R.
Guerra-Hernandez, Erick I.
Almanza-Ojeda, Dora L.
Rostro-Gonzalez, Horacio
Romero-Troncoso, Rene J.
Ibarra-Manzano, Mario A.
author_facet Batres-Mendoza, Patricia
Montoro-Sanjose, Carlos R.
Guerra-Hernandez, Erick I.
Almanza-Ojeda, Dora L.
Rostro-Gonzalez, Horacio
Romero-Troncoso, Rene J.
Ibarra-Manzano, Mario A.
author_sort Batres-Mendoza, Patricia
collection PubMed
description Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.
format Online
Article
Text
id pubmed-4813911
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-48139112016-04-06 Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals Batres-Mendoza, Patricia Montoro-Sanjose, Carlos R. Guerra-Hernandez, Erick I. Almanza-Ojeda, Dora L. Rostro-Gonzalez, Horacio Romero-Troncoso, Rene J. Ibarra-Manzano, Mario A. Sensors (Basel) Article Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. MDPI 2016-03-05 /pmc/articles/PMC4813911/ /pubmed/26959029 http://dx.doi.org/10.3390/s16030336 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Batres-Mendoza, Patricia
Montoro-Sanjose, Carlos R.
Guerra-Hernandez, Erick I.
Almanza-Ojeda, Dora L.
Rostro-Gonzalez, Horacio
Romero-Troncoso, Rene J.
Ibarra-Manzano, Mario A.
Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
title Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
title_full Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
title_fullStr Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
title_full_unstemmed Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
title_short Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
title_sort quaternion-based signal analysis for motor imagery classification from electroencephalographic signals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813911/
https://www.ncbi.nlm.nih.gov/pubmed/26959029
http://dx.doi.org/10.3390/s16030336
work_keys_str_mv AT batresmendozapatricia quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals
AT montorosanjosecarlosr quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals
AT guerrahernandezericki quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals
AT almanzaojedadoral quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals
AT rostrogonzalezhoracio quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals
AT romerotroncosorenej quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals
AT ibarramanzanomarioa quaternionbasedsignalanalysisformotorimageryclassificationfromelectroencephalographicsignals