Cargando…
Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model
Accurate monitoring of heavy metal stress in crops is of great importance to assure agricultural productivity and food security, and remote sensing is an effective tool to address this problem. However, given that Earth observation instruments provide data at multiple scales, the choice of scale for...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813915/ https://www.ncbi.nlm.nih.gov/pubmed/26959033 http://dx.doi.org/10.3390/s16030340 |
_version_ | 1782424344206508032 |
---|---|
author | Huang, Zhi Liu, Xiangnan Jin, Ming Ding, Chao Jiang, Jiale Wu, Ling |
author_facet | Huang, Zhi Liu, Xiangnan Jin, Ming Ding, Chao Jiang, Jiale Wu, Ling |
author_sort | Huang, Zhi |
collection | PubMed |
description | Accurate monitoring of heavy metal stress in crops is of great importance to assure agricultural productivity and food security, and remote sensing is an effective tool to address this problem. However, given that Earth observation instruments provide data at multiple scales, the choice of scale for use in such monitoring is challenging. This study focused on identifying the characteristic scale for effectively monitoring heavy metal stress in rice using the dry weight of roots (WRT) as the representative characteristic, which was obtained by assimilation of GF-1 data with the World Food Studies (WOFOST) model. We explored and quantified the effect of the important state variable LAI (leaf area index) at various spatial scales on the simulated rice WRT to find the critical scale for heavy metal stress monitoring using the statistical characteristics. Furthermore, a ratio analysis based on the varied heavy metal stress levels was conducted to identify the characteristic scale. Results indicated that the critical threshold for investigating the rice WRT in monitoring studies of heavy metal stress was larger than 64 m but smaller than 256 m. This finding represents a useful guideline for choosing the most appropriate imagery. |
format | Online Article Text |
id | pubmed-4813915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-48139152016-04-06 Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model Huang, Zhi Liu, Xiangnan Jin, Ming Ding, Chao Jiang, Jiale Wu, Ling Sensors (Basel) Article Accurate monitoring of heavy metal stress in crops is of great importance to assure agricultural productivity and food security, and remote sensing is an effective tool to address this problem. However, given that Earth observation instruments provide data at multiple scales, the choice of scale for use in such monitoring is challenging. This study focused on identifying the characteristic scale for effectively monitoring heavy metal stress in rice using the dry weight of roots (WRT) as the representative characteristic, which was obtained by assimilation of GF-1 data with the World Food Studies (WOFOST) model. We explored and quantified the effect of the important state variable LAI (leaf area index) at various spatial scales on the simulated rice WRT to find the critical scale for heavy metal stress monitoring using the statistical characteristics. Furthermore, a ratio analysis based on the varied heavy metal stress levels was conducted to identify the characteristic scale. Results indicated that the critical threshold for investigating the rice WRT in monitoring studies of heavy metal stress was larger than 64 m but smaller than 256 m. This finding represents a useful guideline for choosing the most appropriate imagery. MDPI 2016-03-07 /pmc/articles/PMC4813915/ /pubmed/26959033 http://dx.doi.org/10.3390/s16030340 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Zhi Liu, Xiangnan Jin, Ming Ding, Chao Jiang, Jiale Wu, Ling Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model |
title | Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model |
title_full | Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model |
title_fullStr | Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model |
title_full_unstemmed | Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model |
title_short | Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model |
title_sort | deriving the characteristic scale for effectively monitoring heavy metal stress in rice by assimilation of gf-1 data with the wofost model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813915/ https://www.ncbi.nlm.nih.gov/pubmed/26959033 http://dx.doi.org/10.3390/s16030340 |
work_keys_str_mv | AT huangzhi derivingthecharacteristicscaleforeffectivelymonitoringheavymetalstressinricebyassimilationofgf1datawiththewofostmodel AT liuxiangnan derivingthecharacteristicscaleforeffectivelymonitoringheavymetalstressinricebyassimilationofgf1datawiththewofostmodel AT jinming derivingthecharacteristicscaleforeffectivelymonitoringheavymetalstressinricebyassimilationofgf1datawiththewofostmodel AT dingchao derivingthecharacteristicscaleforeffectivelymonitoringheavymetalstressinricebyassimilationofgf1datawiththewofostmodel AT jiangjiale derivingthecharacteristicscaleforeffectivelymonitoringheavymetalstressinricebyassimilationofgf1datawiththewofostmodel AT wuling derivingthecharacteristicscaleforeffectivelymonitoringheavymetalstressinricebyassimilationofgf1datawiththewofostmodel |