Cargando…
Prediction of Military Vehicle’s Drawbar Pull Based on an Improved Relevance Vector Machine and Real Vehicle Tests
The scientific and effective prediction of drawbar pull is of great importance in the evaluation of military vehicle trafficability. Nevertheless, the existing prediction models have demonstrated lots of inherent limitations. In this framework, a multiple-kernel relevance vector machine model (MkRVM...
Autores principales: | Yang, Fan, Sun, Wei, Lin, Guoyu, Zhang, Weigong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813926/ https://www.ncbi.nlm.nih.gov/pubmed/26978359 http://dx.doi.org/10.3390/s16030351 |
Ejemplares similares
-
Frequency Spectra Analysis of Drawbar Pulls Generated by Special Driving Wheels Improving Tractive Performance
por: Abrahám, Rudolf, et al.
Publicado: (2021) -
A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors
por: Song, Xiang, et al.
Publicado: (2014) -
C-ITS Relevant Critical Vehicle-to-Vehicle Accident Scenarios for Accident Analysis
por: Bauder, Maximilian, et al.
Publicado: (2022) -
Real-Time In-Vehicle Air Quality Monitoring System Using Machine Learning Prediction Algorithm
por: Goh, Chew Cheik, et al.
Publicado: (2021) -
Severity of vehicle-to-vehicle accidents in the UAE: An exploratory analysis using machine learning algorithms
por: Maghelal, Praveen, et al.
Publicado: (2023)