Cargando…
Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region
Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories befo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814043/ https://www.ncbi.nlm.nih.gov/pubmed/27029046 http://dx.doi.org/10.1371/journal.pone.0150808 |
_version_ | 1782424368396107776 |
---|---|
author | Callister, Kate E. Griffioen, Peter A. Avitabile, Sarah C. Haslem, Angie Kelly, Luke T. Kenny, Sally A. Nimmo, Dale G. Farnsworth, Lisa M. Taylor, Rick S. Watson, Simon J. Bennett, Andrew F. Clarke, Michael F. |
author_facet | Callister, Kate E. Griffioen, Peter A. Avitabile, Sarah C. Haslem, Angie Kelly, Luke T. Kenny, Sally A. Nimmo, Dale G. Farnsworth, Lisa M. Taylor, Rick S. Watson, Simon J. Bennett, Andrew F. Clarke, Michael F. |
author_sort | Callister, Kate E. |
collection | PubMed |
description | Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km(2) study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (r(s) = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. |
format | Online Article Text |
id | pubmed-4814043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48140432016-04-05 Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region Callister, Kate E. Griffioen, Peter A. Avitabile, Sarah C. Haslem, Angie Kelly, Luke T. Kenny, Sally A. Nimmo, Dale G. Farnsworth, Lisa M. Taylor, Rick S. Watson, Simon J. Bennett, Andrew F. Clarke, Michael F. PLoS One Research Article Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km(2) study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (r(s) = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. Public Library of Science 2016-03-30 /pmc/articles/PMC4814043/ /pubmed/27029046 http://dx.doi.org/10.1371/journal.pone.0150808 Text en © 2016 Callister et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Callister, Kate E. Griffioen, Peter A. Avitabile, Sarah C. Haslem, Angie Kelly, Luke T. Kenny, Sally A. Nimmo, Dale G. Farnsworth, Lisa M. Taylor, Rick S. Watson, Simon J. Bennett, Andrew F. Clarke, Michael F. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region |
title | Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region |
title_full | Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region |
title_fullStr | Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region |
title_full_unstemmed | Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region |
title_short | Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region |
title_sort | historical maps from modern images: using remote sensing to model and map century-long vegetation change in a fire-prone region |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814043/ https://www.ncbi.nlm.nih.gov/pubmed/27029046 http://dx.doi.org/10.1371/journal.pone.0150808 |
work_keys_str_mv | AT callisterkatee historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT griffioenpetera historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT avitabilesarahc historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT haslemangie historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT kellyluket historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT kennysallya historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT nimmodaleg historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT farnsworthlisam historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT taylorricks historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT watsonsimonj historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT bennettandrewf historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion AT clarkemichaelf historicalmapsfrommodernimagesusingremotesensingtomodelandmapcenturylongvegetationchangeinafireproneregion |