Cargando…

Implementation of quantum and classical discrete fractional Fourier transforms

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform...

Descripción completa

Detalles Bibliográficos
Autores principales: Weimann, Steffen, Perez-Leija, Armando, Lebugle, Maxime, Keil, Robert, Tichy, Malte, Gräfe, Markus, Heilmann, René, Nolte, Stefan, Moya-Cessa, Hector, Weihs, Gregor, Christodoulides, Demetrios N., Szameit, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814576/
https://www.ncbi.nlm.nih.gov/pubmed/27006089
http://dx.doi.org/10.1038/ncomms11027
_version_ 1782424443963834368
author Weimann, Steffen
Perez-Leija, Armando
Lebugle, Maxime
Keil, Robert
Tichy, Malte
Gräfe, Markus
Heilmann, René
Nolte, Stefan
Moya-Cessa, Hector
Weihs, Gregor
Christodoulides, Demetrios N.
Szameit, Alexander
author_facet Weimann, Steffen
Perez-Leija, Armando
Lebugle, Maxime
Keil, Robert
Tichy, Malte
Gräfe, Markus
Heilmann, René
Nolte, Stefan
Moya-Cessa, Hector
Weihs, Gregor
Christodoulides, Demetrios N.
Szameit, Alexander
author_sort Weimann, Steffen
collection PubMed
description Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
format Online
Article
Text
id pubmed-4814576
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48145762016-09-06 Implementation of quantum and classical discrete fractional Fourier transforms Weimann, Steffen Perez-Leija, Armando Lebugle, Maxime Keil, Robert Tichy, Malte Gräfe, Markus Heilmann, René Nolte, Stefan Moya-Cessa, Hector Weihs, Gregor Christodoulides, Demetrios N. Szameit, Alexander Nat Commun Article Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. Nature Publishing Group 2016-03-23 /pmc/articles/PMC4814576/ /pubmed/27006089 http://dx.doi.org/10.1038/ncomms11027 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Weimann, Steffen
Perez-Leija, Armando
Lebugle, Maxime
Keil, Robert
Tichy, Malte
Gräfe, Markus
Heilmann, René
Nolte, Stefan
Moya-Cessa, Hector
Weihs, Gregor
Christodoulides, Demetrios N.
Szameit, Alexander
Implementation of quantum and classical discrete fractional Fourier transforms
title Implementation of quantum and classical discrete fractional Fourier transforms
title_full Implementation of quantum and classical discrete fractional Fourier transforms
title_fullStr Implementation of quantum and classical discrete fractional Fourier transforms
title_full_unstemmed Implementation of quantum and classical discrete fractional Fourier transforms
title_short Implementation of quantum and classical discrete fractional Fourier transforms
title_sort implementation of quantum and classical discrete fractional fourier transforms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814576/
https://www.ncbi.nlm.nih.gov/pubmed/27006089
http://dx.doi.org/10.1038/ncomms11027
work_keys_str_mv AT weimannsteffen implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT perezleijaarmando implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT lebuglemaxime implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT keilrobert implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT tichymalte implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT grafemarkus implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT heilmannrene implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT noltestefan implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT moyacessahector implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT weihsgregor implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT christodoulidesdemetriosn implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT szameitalexander implementationofquantumandclassicaldiscretefractionalfouriertransforms