Cargando…
Implementation of quantum and classical discrete fractional Fourier transforms
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814576/ https://www.ncbi.nlm.nih.gov/pubmed/27006089 http://dx.doi.org/10.1038/ncomms11027 |
_version_ | 1782424443963834368 |
---|---|
author | Weimann, Steffen Perez-Leija, Armando Lebugle, Maxime Keil, Robert Tichy, Malte Gräfe, Markus Heilmann, René Nolte, Stefan Moya-Cessa, Hector Weihs, Gregor Christodoulides, Demetrios N. Szameit, Alexander |
author_facet | Weimann, Steffen Perez-Leija, Armando Lebugle, Maxime Keil, Robert Tichy, Malte Gräfe, Markus Heilmann, René Nolte, Stefan Moya-Cessa, Hector Weihs, Gregor Christodoulides, Demetrios N. Szameit, Alexander |
author_sort | Weimann, Steffen |
collection | PubMed |
description | Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. |
format | Online Article Text |
id | pubmed-4814576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48145762016-09-06 Implementation of quantum and classical discrete fractional Fourier transforms Weimann, Steffen Perez-Leija, Armando Lebugle, Maxime Keil, Robert Tichy, Malte Gräfe, Markus Heilmann, René Nolte, Stefan Moya-Cessa, Hector Weihs, Gregor Christodoulides, Demetrios N. Szameit, Alexander Nat Commun Article Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. Nature Publishing Group 2016-03-23 /pmc/articles/PMC4814576/ /pubmed/27006089 http://dx.doi.org/10.1038/ncomms11027 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Weimann, Steffen Perez-Leija, Armando Lebugle, Maxime Keil, Robert Tichy, Malte Gräfe, Markus Heilmann, René Nolte, Stefan Moya-Cessa, Hector Weihs, Gregor Christodoulides, Demetrios N. Szameit, Alexander Implementation of quantum and classical discrete fractional Fourier transforms |
title | Implementation of quantum and classical discrete fractional Fourier transforms |
title_full | Implementation of quantum and classical discrete fractional Fourier transforms |
title_fullStr | Implementation of quantum and classical discrete fractional Fourier transforms |
title_full_unstemmed | Implementation of quantum and classical discrete fractional Fourier transforms |
title_short | Implementation of quantum and classical discrete fractional Fourier transforms |
title_sort | implementation of quantum and classical discrete fractional fourier transforms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814576/ https://www.ncbi.nlm.nih.gov/pubmed/27006089 http://dx.doi.org/10.1038/ncomms11027 |
work_keys_str_mv | AT weimannsteffen implementationofquantumandclassicaldiscretefractionalfouriertransforms AT perezleijaarmando implementationofquantumandclassicaldiscretefractionalfouriertransforms AT lebuglemaxime implementationofquantumandclassicaldiscretefractionalfouriertransforms AT keilrobert implementationofquantumandclassicaldiscretefractionalfouriertransforms AT tichymalte implementationofquantumandclassicaldiscretefractionalfouriertransforms AT grafemarkus implementationofquantumandclassicaldiscretefractionalfouriertransforms AT heilmannrene implementationofquantumandclassicaldiscretefractionalfouriertransforms AT noltestefan implementationofquantumandclassicaldiscretefractionalfouriertransforms AT moyacessahector implementationofquantumandclassicaldiscretefractionalfouriertransforms AT weihsgregor implementationofquantumandclassicaldiscretefractionalfouriertransforms AT christodoulidesdemetriosn implementationofquantumandclassicaldiscretefractionalfouriertransforms AT szameitalexander implementationofquantumandclassicaldiscretefractionalfouriertransforms |