Cargando…
Using higher-order Markov models to reveal flow-based communities in networks
Complex systems made of interacting elements are commonly abstracted as networks, in which nodes are associated with dynamic state variables, whose evolution is driven by interactions mediated by the edges. Markov processes have been the prevailing paradigm to model such a network-based dynamics, fo...
Autores principales: | Salnikov, Vsevolod, Schaub, Michael T., Lambiotte, Renaud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814833/ https://www.ncbi.nlm.nih.gov/pubmed/27029508 http://dx.doi.org/10.1038/srep23194 |
Ejemplares similares
-
From networks to optimal higher-order models of complex systems
por: Lambiotte, Renaud, et al.
Publicado: (2019) -
The many facets of community detection in complex networks
por: Schaub, Michael T., et al.
Publicado: (2017) -
Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge
por: Salnikov, Vsevolod, et al.
Publicado: (2018) -
Mining open datasets for transparency in taxi transport in metropolitan environments
por: Noulas, Anastasios, et al.
Publicado: (2015) -
An Order Reduction Design Framework for Higher-Order Binary Markov Random Fields
por: Chen, Zhuo, et al.
Publicado: (2023)