Cargando…

Developing a model to assess community-level risk of oral diseases for planning public dental services in Australia

BACKGROUND: Poor oral health is a chronic condition that can be extremely costly to manage. In Australia, publicly funded dental services are provided to community members deemed to be eligible—those who are socio-economically disadvantaged or determined to be at higher risk of dental disease. Histo...

Descripción completa

Detalles Bibliográficos
Autores principales: de Silva, Andrea M., Gkolia, Panagiota, Carpenter, Lauren, Cole, Deborah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815130/
https://www.ncbi.nlm.nih.gov/pubmed/27036224
http://dx.doi.org/10.1186/s12903-016-0200-5
Descripción
Sumario:BACKGROUND: Poor oral health is a chronic condition that can be extremely costly to manage. In Australia, publicly funded dental services are provided to community members deemed to be eligible—those who are socio-economically disadvantaged or determined to be at higher risk of dental disease. Historically public dental services have nominally been allocated based on the size of the eligible population in a geographic area. This approach has been largely inadequate for reducing disparities in dental disease, primarily because the approach is treatment-focused, and oral health is influenced by a variety of interacting factors. This paper describes the developmental process of a multi-dimensional community-level risk assessment model, to profile a community’s risk of poor oral health. METHODS: A search of the evidence base was conducted to identify robust frameworks for conceptualisation of risk factors and associated performance indicators. Government and other agency websites were also searched to identify publicly available data assets with items relevant to oral diseases. Data quality and analysis considerations were assessed for the use of mixed data sources. RESULTS: Several frameworks and associated indicator sets (twelve national and eight state-wide data collections with relevant indicators) were identified. Determination of the system inputs for the Model were primarily informed by the World Health Organisation’s (WHO) operational model for an Integrated Oral Health-Chronic Disease Prevention System, and Australia’s National Oral Health Plan 2004–2013. Data quality and access informed the final selection of indicators. CONCLUSIONS: Despite limitations in the quality and regularity of data collections, there are numerous data sources available that provide the required data inputs for community-level risk assessment for oral health. Assessing risk in this way will enhance our ability to deliver appropriate public oral health care services and address the uneven distribution of oral disease across the social gradient.