Cargando…
Do little interactions get lost in dark random forests?
BACKGROUND: Random forests have often been claimed to uncover interaction effects. However, if and how interaction effects can be differentiated from marginal effects remains unclear. In extensive simulation studies, we investigate whether random forest variable importance measures capture or detect...
Autores principales: | Wright, Marvin N., Ziegler, Andreas, König, Inke R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815164/ https://www.ncbi.nlm.nih.gov/pubmed/27029549 http://dx.doi.org/10.1186/s12859-016-0995-8 |
Ejemplares similares
-
Splitting on categorical predictors in random forests
por: Wright, Marvin N., et al.
Publicado: (2019) -
Evaluation of single-nucleotide polymorphism imputation using random forests
por: Schwarz, Daniel F, et al.
Publicado: (2009) -
Picking single-nucleotide polymorphisms in forests
por: Schwarz, Daniel F, et al.
Publicado: (2007) -
Little composite dark matter
por: Balkin, Reuven, et al.
Publicado: (2018) -
Commentary: Don't get lost in the loop
por: Bruno, Vito Domenico, et al.
Publicado: (2020)