Cargando…

Systematically probing the bottom-up synthesis of AuPAMAM conjugates for enhanced transfection efficiency

BACKGROUND: Gold nanoparticles (AuNPs) have shown great promise as scaffolds for gene therapy vectors due to their attractive physiochemical properties which include biocompatibility, ease of functionalization via the nearly covalent gold-sulfur dative bond, and surface plasmon optical properties. P...

Descripción completa

Detalles Bibliográficos
Autores principales: Figueroa, Elizabeth R., Stephen Yan, J., Chamberlain-Simon, Nicolette K., Lin, Adam Y., Foster, Aaron E., Drezek, Rebekah A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815207/
https://www.ncbi.nlm.nih.gov/pubmed/27029613
http://dx.doi.org/10.1186/s12951-016-0178-9
Descripción
Sumario:BACKGROUND: Gold nanoparticles (AuNPs) have shown great promise as scaffolds for gene therapy vectors due to their attractive physiochemical properties which include biocompatibility, ease of functionalization via the nearly covalent gold-sulfur dative bond, and surface plasmon optical properties. Previously, we synthesized stable AuNP-polyamidoamine (AuPAMAM) conjugates and showed their success in vitro as non-viral gene delivery vectors. RESULTS: In this study, we systematically perturbed each component of the AuPAMAM conjugates and analyzed the resulting effect on transfection efficiency. Due to the modular, bottom-up nature of the AuPAMAM synthesis, we were able to probe each step of the fabrication process. The relationship between each conjugation parameter and the function of the final vector were investigated. More than fourfold enhanced transfection efficiency was achieved by modifying the PAMAM concentration, PAMAM core chemistry, PAMAM terminus chemistry, and self-assembled monolayer composition of the AuPAMAM conjugates. CONCLUSIONS: This work suggest that AuPAMAM synthesis platform is a promising non-viral gene therapy approach and highlights the importance of inspecting the role of each individual constituent in all nanotechnology hybrid materials. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-016-0178-9) contains supplementary material, which is available to authorized users.