Cargando…
Protein dynamics and the all‐ferrous [Fe(4) S (4)] cluster in the nitrogenase iron protein
In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum–FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely cle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815322/ https://www.ncbi.nlm.nih.gov/pubmed/26271353 http://dx.doi.org/10.1002/pro.2772 |
_version_ | 1782424575824363520 |
---|---|
author | Tan, Ming‐Liang Perrin, B. Scott Niu, Shuqiang Huang, Qi Ichiye, Toshiko |
author_facet | Tan, Ming‐Liang Perrin, B. Scott Niu, Shuqiang Huang, Qi Ichiye, Toshiko |
author_sort | Tan, Ming‐Liang |
collection | PubMed |
description | In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum–FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe(4)S(4)](1+) cluster, evidence also exists for an all‐ferrous [Fe(4)S(4)](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all‐ferrous [Fe(4)S(4)](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, “density functional theory plus Poisson Boltzmann” calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all‐ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes. |
format | Online Article Text |
id | pubmed-4815322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48153222017-01-01 Protein dynamics and the all‐ferrous [Fe(4) S (4)] cluster in the nitrogenase iron protein Tan, Ming‐Liang Perrin, B. Scott Niu, Shuqiang Huang, Qi Ichiye, Toshiko Protein Sci Articles In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum–FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe(4)S(4)](1+) cluster, evidence also exists for an all‐ferrous [Fe(4)S(4)](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all‐ferrous [Fe(4)S(4)](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, “density functional theory plus Poisson Boltzmann” calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all‐ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes. John Wiley and Sons Inc. 2015-09-01 2016-01 /pmc/articles/PMC4815322/ /pubmed/26271353 http://dx.doi.org/10.1002/pro.2772 Text en © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Articles Tan, Ming‐Liang Perrin, B. Scott Niu, Shuqiang Huang, Qi Ichiye, Toshiko Protein dynamics and the all‐ferrous [Fe(4) S (4)] cluster in the nitrogenase iron protein |
title | Protein dynamics and the all‐ferrous [Fe(4)
S
(4)] cluster in the nitrogenase iron protein |
title_full | Protein dynamics and the all‐ferrous [Fe(4)
S
(4)] cluster in the nitrogenase iron protein |
title_fullStr | Protein dynamics and the all‐ferrous [Fe(4)
S
(4)] cluster in the nitrogenase iron protein |
title_full_unstemmed | Protein dynamics and the all‐ferrous [Fe(4)
S
(4)] cluster in the nitrogenase iron protein |
title_short | Protein dynamics and the all‐ferrous [Fe(4)
S
(4)] cluster in the nitrogenase iron protein |
title_sort | protein dynamics and the all‐ferrous [fe(4)
s
(4)] cluster in the nitrogenase iron protein |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815322/ https://www.ncbi.nlm.nih.gov/pubmed/26271353 http://dx.doi.org/10.1002/pro.2772 |
work_keys_str_mv | AT tanmingliang proteindynamicsandtheallferrousfe4s4clusterinthenitrogenaseironprotein AT perrinbscott proteindynamicsandtheallferrousfe4s4clusterinthenitrogenaseironprotein AT niushuqiang proteindynamicsandtheallferrousfe4s4clusterinthenitrogenaseironprotein AT huangqi proteindynamicsandtheallferrousfe4s4clusterinthenitrogenaseironprotein AT ichiyetoshiko proteindynamicsandtheallferrousfe4s4clusterinthenitrogenaseironprotein |