Cargando…

Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow

Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze–thaw events, are still poorly understood. We compared two differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Remias, Daniel, Pichrtová, Martina, Pangratz, Marion, Lütz, Cornelius, Holzinger, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815433/
https://www.ncbi.nlm.nih.gov/pubmed/26884467
http://dx.doi.org/10.1093/femsec/fiw030
Descripción
Sumario:Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze–thaw events, are still poorly understood. We compared two different snow habitats containing two different green algal genera in the European Alps, namely algae blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) and algae dominating waterlogged snow bedded over ice (Chlainomonas sp.). Despite the morphological similarity of the red spores found at the snow surface, we found differences in intracellular organization investigated by light and transmission electron microscopy and in secondary pigments investigated by chromatographic analysis in combination with mass spectrometry. Spores of Chlainomonas sp. show clear differences from Chlamydomonas nivalis in cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiological activity, despite no cell division being present. Lipid bodies containing the carotenoid astaxanthin, which produces the red color, dominate cells of both species, but are modified differently. While in Chlainomonas sp. astaxanthin is mainly esterified with two fatty acids and is more apolar, in Chamydomonas nivalis, in contrast, less apolar monoesters prevail.