Cargando…
Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations
Missing information in motion capture data caused by occlusion or detachment of markers is a common problem that is difficult to avoid entirely. The aim of this study was to develop and test an algorithm for reconstruction of corrupted marker trajectories in datasets representing human gait. The rec...
Autores principales: | Gløersen, Øyvind, Federolf, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816448/ https://www.ncbi.nlm.nih.gov/pubmed/27031243 http://dx.doi.org/10.1371/journal.pone.0152616 |
Ejemplares similares
-
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
por: Federolf, Peter Andreas
Publicado: (2013) -
Locally weighted PCA regression to recover missing markers in human motion data
por: Kieu, Hai Dang, et al.
Publicado: (2022) -
Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR
por: Rácz, Anita, et al.
Publicado: (2019) -
Intercorrelations of lipoprotein subfractions and their covariation with lifestyle factors in healthy men
por: Parlesak, Alexandr, et al.
Publicado: (2014) -
Intercorrelations of morphology with hemodynamics in intracranial aneurysms in computational fluid dynamics
por: Qiu, Tianlun, et al.
Publicado: (2017)