Cargando…

Orthodontic intrusion of maxillary incisors: a 3D finite element method study

OBJECTIVE: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intru...

Descripción completa

Detalles Bibliográficos
Autores principales: Saga, Armando Yukio, Maruo, Hiroshi, Argenta, Marco André, Maruo, Ivan Toshio, Tanaka, Orlando Motohiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dental Press International 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816589/
https://www.ncbi.nlm.nih.gov/pubmed/27007765
http://dx.doi.org/10.1590/2177-6709.21.1.075-082.oar
Descripción
Sumario:OBJECTIVE: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. METHODS: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1); bilaterally between the brackets of central and lateral incisors (LOAD 2); bilaterally distal to the brackets of lateral incisors (LOAD 3); bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4). RESULTS AND CONCLUSIONS: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution.