Cargando…
A Bayesian approach for structure learning in oscillating regulatory networks
Motivation: Oscillations lie at the core of many biological processes, from the cell cycle, to circadian oscillations and developmental processes. Time-keeping mechanisms are essential to enable organisms to adapt to varying conditions in environmental cycles, from day/night to seasonal. Transcripti...
Autores principales: | Trejo Banos, Daniel, Millar, Andrew J., Sanguinetti, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817140/ https://www.ncbi.nlm.nih.gov/pubmed/26177966 http://dx.doi.org/10.1093/bioinformatics/btv414 |
Ejemplares similares
-
Combining tree-based and dynamical systems for the inference of gene regulatory networks
por: Huynh-Thu, Vân Anh, et al.
Publicado: (2015) -
Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method
por: Yu, Bin, et al.
Publicado: (2017) -
A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks
por: Sauta, Elisabetta, et al.
Publicado: (2020) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Learning complex dependency structure of gene regulatory networks from high dimensional microarray data with Gaussian Bayesian networks
por: Graafland, Catharina E., et al.
Publicado: (2022)