Cargando…

Development and application of a rapid and visual loop-mediated isothermal amplification for the detection of Sporisorium scitamineum in sugarcane

Smut is a fungal disease with widespread prevalence in sugarcane planting areas. Early detection and proper identification of Sporisorium scitamineum are essential in smut management practices. In the present study, four specific primers targeting the core effector Pep1 gene of S. scitamineum were d...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Yachun, Yang, Yuting, Peng, Qiong, Zhou, Dinggang, Chen, Yun, Wang, Zhuqing, Xu, Liping, Que, Youxiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817513/
https://www.ncbi.nlm.nih.gov/pubmed/27035751
http://dx.doi.org/10.1038/srep23994
Descripción
Sumario:Smut is a fungal disease with widespread prevalence in sugarcane planting areas. Early detection and proper identification of Sporisorium scitamineum are essential in smut management practices. In the present study, four specific primers targeting the core effector Pep1 gene of S. scitamineum were designed. Optimal concentrations of Mg(2+), primer and Bst DNA polymerase, the three important components of the loop-mediated isothermal amplification (LAMP) reaction system, were screened using a single factor experiment method and the L(16)(4(5)) orthogonal experimental design. Hence, a LAMP system suitable for detection of S. scitamineum was established. High specificity of the LAMP method was confirmed by the assay of S. scitamineum, Fusarium moniliforme, Pestalotia ginkgo, Helminthospcrium sacchari, Fusarium oxysporum and endophytes of Yacheng05-179 and ROC22. The sensitivity of the LAMP method was equal to that of the conventional PCR targeting Pep1 gene and was 100 times higher than that of the conventional PCR assay targeting bE gene in S. scitamineum. The results suggest that this novel LAMP system has strong specificity and high sensitivity. This method not only provides technological support for the epidemic monitoring of sugarcane smut, but also provides a good case for development of similar detection technology for other plant pathogens.