Cargando…
Correlated Observations, the Law of Small Numbers and Bank Runs
Empirical descriptions and studies suggest that generally depositors observe a sample of previous decisions before deciding if to keep their funds deposited or to withdraw them. These observed decisions may exhibit different degrees of correlation across depositors. In our model depositors decide se...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817959/ https://www.ncbi.nlm.nih.gov/pubmed/27035435 http://dx.doi.org/10.1371/journal.pone.0147268 |
Sumario: | Empirical descriptions and studies suggest that generally depositors observe a sample of previous decisions before deciding if to keep their funds deposited or to withdraw them. These observed decisions may exhibit different degrees of correlation across depositors. In our model depositors decide sequentially and are assumed to follow the law of small numbers in the sense that they believe that a bank run is underway if the number of observed withdrawals in their sample is large. Theoretically, with highly correlated samples and infinite depositors runs occur with certainty, while with random samples it needs not be the case, as for many parameter settings the likelihood of bank runs is zero. We investigate the intermediate cases and find that i) decreasing the correlation and ii) increasing the sample size reduces the likelihood of bank runs, ceteris paribus. Interestingly, the multiplicity of equilibria, a feature of the canonical Diamond-Dybvig model that we use also, disappears almost completely in our setup. Our results have relevant policy implications. |
---|