Cargando…
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and ad...
Autores principales: | Shanechi, Maryam M., Orsborn, Amy L., Carmena, Jose M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818102/ https://www.ncbi.nlm.nih.gov/pubmed/27035820 http://dx.doi.org/10.1371/journal.pcbi.1004730 |
Ejemplares similares
-
Rapid control and feedback rates enhance neuroprosthetic control
por: Shanechi, Maryam M., et al.
Publicado: (2017) -
Creating new functional circuits for action via brain-machine interfaces
por: Orsborn, Amy L., et al.
Publicado: (2013) -
A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design
por: Shanechi, Maryam M., et al.
Publicado: (2013) -
Optimizing the learning rate for adaptive estimation of neural encoding models
por: Hsieh, Han-Lin, et al.
Publicado: (2018) -
A Brain-Machine Interface for Control of Medically-Induced Coma
por: Shanechi, Maryam M., et al.
Publicado: (2013)