Cargando…
Genomic analysis of xCT-regulatory network in KSHV + primary effusion lymphomas
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of primary effusion lymphoma (PEL), a rapidly progressing malignancy mostly arising in HIV-infected patients Chen et al. (2007) [1]. Even under conventional chemotherapy, PEL continues to portend nearly 100% mortality withi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818344/ https://www.ncbi.nlm.nih.gov/pubmed/27081633 http://dx.doi.org/10.1016/j.gdata.2016.02.011 |
Sumario: | Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of primary effusion lymphoma (PEL), a rapidly progressing malignancy mostly arising in HIV-infected patients Chen et al. (2007) [1]. Even under conventional chemotherapy, PEL continues to portend nearly 100% mortality within several months, which urgently requires novel therapeutic strategies. We have previously demonstrated that targeting xCT, an amino acid transporter for cystine/glutamate exchange, induces significant PEL cell apoptosis through regulation of multiple host and viral factors [2]. More importantly, one of xCT selective inhibitors, Sulfasalazine (SASP), effectively prevents PEL tumor progression in an immune-deficient xenograft model [2]. In the current study, we use Illumina microarray to explore the profile of genes altered by SASP treatment within 3 KSHV + PEL cell-lines, and discover that many genes involved in oxidative stress/antioxidant defense system, apoptosis/anti-apoptosis/cell death, and cellular response to unfolded proteins/topologically incorrect proteins are potentially regulated by xCT Dai et al. (2015) [3]. The microarray original data have been submitted to Gene Expression Omnibus (GEO) database (Accession number: GSE65418). |
---|