Cargando…
A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data
Feature (gene) selection and classification of microarray data are the two most interesting machine learning challenges. In the present work two existing feature selection/extraction algorithms, namely independent component analysis (ICA) and fuzzy backward feature elimination (FBFE) are used which...
Autores principales: | Aziz, Rabia, Verma, C.K., Srivastava, Namita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818349/ https://www.ncbi.nlm.nih.gov/pubmed/27081632 http://dx.doi.org/10.1016/j.gdata.2016.02.012 |
Ejemplares similares
-
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays
por: Hajiloo, Mohsen, et al.
Publicado: (2013) -
Cancer Classification in Microarray Data using a Hybrid Selective Independent Component Analysis and υ-Support Vector Machine Algorithm
por: Saberkari, Hamidreza, et al.
Publicado: (2014) -
Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data
por: Wang, Junbai, et al.
Publicado: (2003) -
Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification
por: Nguyen, Thanh, et al.
Publicado: (2015) -
Efficient feature selection and classification for microarray data
por: Li, Zifa, et al.
Publicado: (2018)