Cargando…

Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source

BACKGROUND: The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911) has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. OBJECTIVE: This stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chih-Chiang, Ding, Shangwu, Chiu, Kuo-Hsun, Liu, Wen-Sheng, Lin, Tai-Jung, Wen, Zhi-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Co-Action Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818355/
https://www.ncbi.nlm.nih.gov/pubmed/27037001
http://dx.doi.org/10.3402/fnr.v60.29580
Descripción
Sumario:BACKGROUND: The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911) has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. OBJECTIVE: This study aims to investigate the components of Lycogen™ and its anti-inflammatory properties and anti-oxidative activity. DESIGN AND RESULTS: The mutant strain R. sphaeroides (WL-APD911) whose carotenoid 1,2-hydratase gene has been altered by chemical mutagenesis was used for the production of a new carotenoid. The strain was grown at 30°C on Luria–Bertani (LB) agar plates. After a 4-day culture period, the mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type. In the DPPH test, Lycogen™ showed more potent anti-oxidative activity than lycopene from the wild-type strain. Primary skin irritation test with hamsters showed no irritation response in hamster skins after 30 days of treatment with 0.2% Lycogen™. Chemical investigations of Lycogen™ using nuclear magnetic resonance (NMR) (1)H, (13)C, and COSY/DQCOSY spectra have identified spheroidenone and methoxyneurosporene. Quantitative analysis of these identified compounds based on spectral intensities indicates that spheroidenone and methoxyneurosporene are major components (approximately 1:1); very small quantities of other derivatives are also present in the sample. CONCLUSIONS: In this study, we identified the major carotenoid compounds contained in Lycogen™, including spheroidenone and methoxyneurosporene by high-resolution NMR spectroscopy analysis. The carotenoid content of this mutant strain of R. sphaeroides was 3.5-fold higher than that in normal strain. Furthermore, Lycogen™ from the mutant strain is more potent than lycopene from the wild-type strain and does not cause irritation in hamster skins. These findings suggest that this mutant strain has the potential to be used as an enriched carotenoid source.