Cargando…
Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source
BACKGROUND: The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911) has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. OBJECTIVE: This stud...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Co-Action Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818355/ https://www.ncbi.nlm.nih.gov/pubmed/27037001 http://dx.doi.org/10.3402/fnr.v60.29580 |
Sumario: | BACKGROUND: The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911) has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. OBJECTIVE: This study aims to investigate the components of Lycogen™ and its anti-inflammatory properties and anti-oxidative activity. DESIGN AND RESULTS: The mutant strain R. sphaeroides (WL-APD911) whose carotenoid 1,2-hydratase gene has been altered by chemical mutagenesis was used for the production of a new carotenoid. The strain was grown at 30°C on Luria–Bertani (LB) agar plates. After a 4-day culture period, the mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type. In the DPPH test, Lycogen™ showed more potent anti-oxidative activity than lycopene from the wild-type strain. Primary skin irritation test with hamsters showed no irritation response in hamster skins after 30 days of treatment with 0.2% Lycogen™. Chemical investigations of Lycogen™ using nuclear magnetic resonance (NMR) (1)H, (13)C, and COSY/DQCOSY spectra have identified spheroidenone and methoxyneurosporene. Quantitative analysis of these identified compounds based on spectral intensities indicates that spheroidenone and methoxyneurosporene are major components (approximately 1:1); very small quantities of other derivatives are also present in the sample. CONCLUSIONS: In this study, we identified the major carotenoid compounds contained in Lycogen™, including spheroidenone and methoxyneurosporene by high-resolution NMR spectroscopy analysis. The carotenoid content of this mutant strain of R. sphaeroides was 3.5-fold higher than that in normal strain. Furthermore, Lycogen™ from the mutant strain is more potent than lycopene from the wild-type strain and does not cause irritation in hamster skins. These findings suggest that this mutant strain has the potential to be used as an enriched carotenoid source. |
---|