Cargando…
Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
[Image: see text] Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819537/ https://www.ncbi.nlm.nih.gov/pubmed/26824406 http://dx.doi.org/10.1021/jacs.5b13273 |
_version_ | 1782425221578358784 |
---|---|
author | Allan, Phoebe K. Griffin, John M. Darwiche, Ali Borkiewicz, Olaf J. Wiaderek, Kamila M. Chapman, Karena W. Morris, Andrew J. Chupas, Peter J. Monconduit, Laure Grey, Clare P. |
author_facet | Allan, Phoebe K. Griffin, John M. Darwiche, Ali Borkiewicz, Olaf J. Wiaderek, Kamila M. Chapman, Karena W. Morris, Andrew J. Chupas, Peter J. Monconduit, Laure Grey, Clare P. |
author_sort | Allan, Phoebe K. |
collection | PubMed |
description | [Image: see text] Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na(x)Sb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3–x)Sb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na(3)Sb (c-Na(3)Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3–x)Sb and, finally, crystalline Na(3)Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3–x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3–x)Sb without the formation of a-Na(1.7)Sb. a-Na(3–x)Sb is converted to crystalline Na(3)Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na(3)Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. |
format | Online Article Text |
id | pubmed-4819537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-48195372016-04-06 Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy Allan, Phoebe K. Griffin, John M. Darwiche, Ali Borkiewicz, Olaf J. Wiaderek, Kamila M. Chapman, Karena W. Morris, Andrew J. Chupas, Peter J. Monconduit, Laure Grey, Clare P. J Am Chem Soc [Image: see text] Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na(x)Sb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3–x)Sb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na(3)Sb (c-Na(3)Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3–x)Sb and, finally, crystalline Na(3)Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3–x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3–x)Sb without the formation of a-Na(1.7)Sb. a-Na(3–x)Sb is converted to crystalline Na(3)Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na(3)Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. American Chemical Society 2016-01-29 2016-02-24 /pmc/articles/PMC4819537/ /pubmed/26824406 http://dx.doi.org/10.1021/jacs.5b13273 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Allan, Phoebe K. Griffin, John M. Darwiche, Ali Borkiewicz, Olaf J. Wiaderek, Kamila M. Chapman, Karena W. Morris, Andrew J. Chupas, Peter J. Monconduit, Laure Grey, Clare P. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy |
title | Tracking
Sodium-Antimonide Phase Transformations in
Sodium-Ion Anodes: Insights from Operando Pair Distribution Function
Analysis and Solid-State NMR Spectroscopy |
title_full | Tracking
Sodium-Antimonide Phase Transformations in
Sodium-Ion Anodes: Insights from Operando Pair Distribution Function
Analysis and Solid-State NMR Spectroscopy |
title_fullStr | Tracking
Sodium-Antimonide Phase Transformations in
Sodium-Ion Anodes: Insights from Operando Pair Distribution Function
Analysis and Solid-State NMR Spectroscopy |
title_full_unstemmed | Tracking
Sodium-Antimonide Phase Transformations in
Sodium-Ion Anodes: Insights from Operando Pair Distribution Function
Analysis and Solid-State NMR Spectroscopy |
title_short | Tracking
Sodium-Antimonide Phase Transformations in
Sodium-Ion Anodes: Insights from Operando Pair Distribution Function
Analysis and Solid-State NMR Spectroscopy |
title_sort | tracking
sodium-antimonide phase transformations in
sodium-ion anodes: insights from operando pair distribution function
analysis and solid-state nmr spectroscopy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819537/ https://www.ncbi.nlm.nih.gov/pubmed/26824406 http://dx.doi.org/10.1021/jacs.5b13273 |
work_keys_str_mv | AT allanphoebek trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT griffinjohnm trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT darwicheali trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT borkiewiczolafj trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT wiaderekkamilam trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT chapmankarenaw trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT morrisandrewj trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT chupaspeterj trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT monconduitlaure trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy AT greyclarep trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy |