Cargando…

Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

[Image: see text] Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of...

Descripción completa

Detalles Bibliográficos
Autores principales: Allan, Phoebe K., Griffin, John M., Darwiche, Ali, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Morris, Andrew J., Chupas, Peter J., Monconduit, Laure, Grey, Clare P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819537/
https://www.ncbi.nlm.nih.gov/pubmed/26824406
http://dx.doi.org/10.1021/jacs.5b13273
_version_ 1782425221578358784
author Allan, Phoebe K.
Griffin, John M.
Darwiche, Ali
Borkiewicz, Olaf J.
Wiaderek, Kamila M.
Chapman, Karena W.
Morris, Andrew J.
Chupas, Peter J.
Monconduit, Laure
Grey, Clare P.
author_facet Allan, Phoebe K.
Griffin, John M.
Darwiche, Ali
Borkiewicz, Olaf J.
Wiaderek, Kamila M.
Chapman, Karena W.
Morris, Andrew J.
Chupas, Peter J.
Monconduit, Laure
Grey, Clare P.
author_sort Allan, Phoebe K.
collection PubMed
description [Image: see text] Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na(x)Sb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3–x)Sb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na(3)Sb (c-Na(3)Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3–x)Sb and, finally, crystalline Na(3)Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3–x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3–x)Sb without the formation of a-Na(1.7)Sb. a-Na(3–x)Sb is converted to crystalline Na(3)Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na(3)Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.
format Online
Article
Text
id pubmed-4819537
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-48195372016-04-06 Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy Allan, Phoebe K. Griffin, John M. Darwiche, Ali Borkiewicz, Olaf J. Wiaderek, Kamila M. Chapman, Karena W. Morris, Andrew J. Chupas, Peter J. Monconduit, Laure Grey, Clare P. J Am Chem Soc [Image: see text] Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na(x)Sb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3–x)Sb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na(3)Sb (c-Na(3)Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3–x)Sb and, finally, crystalline Na(3)Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3–x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3–x)Sb without the formation of a-Na(1.7)Sb. a-Na(3–x)Sb is converted to crystalline Na(3)Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na(3)Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. American Chemical Society 2016-01-29 2016-02-24 /pmc/articles/PMC4819537/ /pubmed/26824406 http://dx.doi.org/10.1021/jacs.5b13273 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Allan, Phoebe K.
Griffin, John M.
Darwiche, Ali
Borkiewicz, Olaf J.
Wiaderek, Kamila M.
Chapman, Karena W.
Morris, Andrew J.
Chupas, Peter J.
Monconduit, Laure
Grey, Clare P.
Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
title Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
title_full Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
title_fullStr Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
title_full_unstemmed Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
title_short Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy
title_sort tracking sodium-antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state nmr spectroscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819537/
https://www.ncbi.nlm.nih.gov/pubmed/26824406
http://dx.doi.org/10.1021/jacs.5b13273
work_keys_str_mv AT allanphoebek trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT griffinjohnm trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT darwicheali trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT borkiewiczolafj trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT wiaderekkamilam trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT chapmankarenaw trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT morrisandrewj trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT chupaspeterj trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT monconduitlaure trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy
AT greyclarep trackingsodiumantimonidephasetransformationsinsodiumionanodesinsightsfromoperandopairdistributionfunctionanalysisandsolidstatenmrspectroscopy