Cargando…

High‐resolution magic angle spinning (1)H NMR measurement of ligand concentration in solvent‐saturated chromatographic beads

A method based on (1)H high‐resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a w...

Descripción completa

Detalles Bibliográficos
Autores principales: Elwinger, Fredrik, Furó, István
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819705/
https://www.ncbi.nlm.nih.gov/pubmed/26791865
http://dx.doi.org/10.1002/mrc.4370
Descripción
Sumario:A method based on (1)H high‐resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water‐saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by (13)C single‐pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re‐distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.