Cargando…

Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach

The partial expected value of perfect information (EVPI) quantifies the expected benefit of learning the values of uncertain parameters in a decision model. Partial EVPI is commonly estimated via a 2-level Monte Carlo procedure in which parameters of interest are sampled in an outer loop, and then c...

Descripción completa

Detalles Bibliográficos
Autores principales: Strong, Mark, Oakley, Jeremy E., Brennan, Alan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819801/
https://www.ncbi.nlm.nih.gov/pubmed/24246566
http://dx.doi.org/10.1177/0272989X13505910
_version_ 1782425286093045760
author Strong, Mark
Oakley, Jeremy E.
Brennan, Alan
author_facet Strong, Mark
Oakley, Jeremy E.
Brennan, Alan
author_sort Strong, Mark
collection PubMed
description The partial expected value of perfect information (EVPI) quantifies the expected benefit of learning the values of uncertain parameters in a decision model. Partial EVPI is commonly estimated via a 2-level Monte Carlo procedure in which parameters of interest are sampled in an outer loop, and then conditional on these, the remaining parameters are sampled in an inner loop. This is computationally demanding and may be difficult if correlation between input parameters results in conditional distributions that are hard to sample from. We describe a novel nonparametric regression-based method for estimating partial EVPI that requires only the probabilistic sensitivity analysis sample (i.e., the set of samples drawn from the joint distribution of the parameters and the corresponding net benefits). The method is applicable in a model of any complexity and with any specification of input parameter distribution. We describe the implementation of the method via 2 nonparametric regression modeling approaches, the Generalized Additive Model and the Gaussian process. We demonstrate in 2 case studies the superior efficiency of the regression method over the 2-level Monte Carlo method. R code is made available to implement the method.
format Online
Article
Text
id pubmed-4819801
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-48198012016-04-20 Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach Strong, Mark Oakley, Jeremy E. Brennan, Alan Med Decis Making Original Articles The partial expected value of perfect information (EVPI) quantifies the expected benefit of learning the values of uncertain parameters in a decision model. Partial EVPI is commonly estimated via a 2-level Monte Carlo procedure in which parameters of interest are sampled in an outer loop, and then conditional on these, the remaining parameters are sampled in an inner loop. This is computationally demanding and may be difficult if correlation between input parameters results in conditional distributions that are hard to sample from. We describe a novel nonparametric regression-based method for estimating partial EVPI that requires only the probabilistic sensitivity analysis sample (i.e., the set of samples drawn from the joint distribution of the parameters and the corresponding net benefits). The method is applicable in a model of any complexity and with any specification of input parameter distribution. We describe the implementation of the method via 2 nonparametric regression modeling approaches, the Generalized Additive Model and the Gaussian process. We demonstrate in 2 case studies the superior efficiency of the regression method over the 2-level Monte Carlo method. R code is made available to implement the method. SAGE Publications 2013-11-18 2016-04 /pmc/articles/PMC4819801/ /pubmed/24246566 http://dx.doi.org/10.1177/0272989X13505910 Text en © The Author(s) 2013 http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(http://www.uk.sagepub.com/aboutus/openaccess.htm).
spellingShingle Original Articles
Strong, Mark
Oakley, Jeremy E.
Brennan, Alan
Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
title Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
title_full Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
title_fullStr Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
title_full_unstemmed Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
title_short Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
title_sort estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819801/
https://www.ncbi.nlm.nih.gov/pubmed/24246566
http://dx.doi.org/10.1177/0272989X13505910
work_keys_str_mv AT strongmark estimatingmultiparameterpartialexpectedvalueofperfectinformationfromaprobabilisticsensitivityanalysissampleanonparametricregressionapproach
AT oakleyjeremye estimatingmultiparameterpartialexpectedvalueofperfectinformationfromaprobabilisticsensitivityanalysissampleanonparametricregressionapproach
AT brennanalan estimatingmultiparameterpartialexpectedvalueofperfectinformationfromaprobabilisticsensitivityanalysissampleanonparametricregressionapproach