Cargando…
Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach
The partial expected value of perfect information (EVPI) quantifies the expected benefit of learning the values of uncertain parameters in a decision model. Partial EVPI is commonly estimated via a 2-level Monte Carlo procedure in which parameters of interest are sampled in an outer loop, and then c...
Autores principales: | Strong, Mark, Oakley, Jeremy E., Brennan, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819801/ https://www.ncbi.nlm.nih.gov/pubmed/24246566 http://dx.doi.org/10.1177/0272989X13505910 |
Ejemplares similares
-
Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample: A Fast, Nonparametric Regression-Based Method
por: Strong, Mark, et al.
Publicado: (2015) -
Fast efficient computation of expected value of sample information from a probabilistic sensitivity analysis sample: a non-parametric regression approach
por: Strong, Mark, et al.
Publicado: (2013) -
Strategies for Efficient Computation of the Expected Value of Partial Perfect Information
por: Madan, Jason, et al.
Publicado: (2014) -
Genomic breeding value estimation using nonparametric additive regression models
por: Bennewitz, Jörn, et al.
Publicado: (2009) -
Asymptotically efficient estimates for nonparametric regression models
por: Galtchouk, L, et al.
Publicado: (2004)