Cargando…
Label-free proteomic analysis of the hydrophobic membrane protein complement in articular chondrocytes: a technique for identification of membrane biomarkers
Context: There is insufficient knowledge about the chondrocyte membranome and its molecular composition. Objective: To develop a Triton X-114 based separation technique using nanoLC-MS/MS combined with shotgun proteomics to identify chondrocyte membrane proteins. Materials and methods: Articular cho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819840/ https://www.ncbi.nlm.nih.gov/pubmed/26864288 http://dx.doi.org/10.3109/1354750X.2015.1130191 |
Sumario: | Context: There is insufficient knowledge about the chondrocyte membranome and its molecular composition. Objective: To develop a Triton X-114 based separation technique using nanoLC-MS/MS combined with shotgun proteomics to identify chondrocyte membrane proteins. Materials and methods: Articular chondrocytes from equine metacarpophalangeal joints were separated into hydrophobic and hydrophilic fractions; trypsin-digested proteins were analysed by nanoLC-MS/MS. Results: A total of 315 proteins were identified. The phase extraction method yielded a high proportion of membrane proteins (56%) including CD276, S100-A6 and three VDAC isoforms. Discussion: Defining the chondrocyte membranome is likely to reveal new biomarker targets for conventional and biological drug discovery. |
---|