Cargando…

Molecular Biology and Clinical Mitigation of Cancer Treatment-Induced Neuropathy

Disruption of microtubule function is the antitumor mechanism of several classes of drugs used to treat cancer today. However, the significant beneficial effect on tumor outcomes is frequently counterbalanced by neurotoxic complications. Despite an abundance of scientific data, our under-standing of...

Descripción completa

Detalles Bibliográficos
Autores principales: Higa, Gerald M., Sypult, Corbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820064/
https://www.ncbi.nlm.nih.gov/pubmed/27081324
http://dx.doi.org/10.4137/CMO.S32810
Descripción
Sumario:Disruption of microtubule function is the antitumor mechanism of several classes of drugs used to treat cancer today. However, the significant beneficial effect on tumor outcomes is frequently counterbalanced by neurotoxic complications. Despite an abundance of scientific data, our under-standing of the biological mechanisms underlying this toxic reaction remains unclear, further hindering attempts to identify and develop effective preventive strategies. The primary goals of this review are to: (1) provide insight regarding the biology of the microtubule, (2) analyze the molecular and biochemical pathways that may be involved in the development of neurotoxicity, and (3) propose a unifying concept linking drug-induced neuropathy, microtubule dysfunction, and vitamin D.