Cargando…
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
Random forests consisting of an ensemble of regression trees with equal weights are frequently used for design of predictive models. In this article, we consider an extension of the methodology by representing the regression trees in the form of probabilistic trees and analyzing the nature of hetero...
Autores principales: | Rahman, Raziur, Haider, Saad, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820080/ https://www.ncbi.nlm.nih.gov/pubmed/27081304 http://dx.doi.org/10.4137/CIN.S30794 |
Ejemplares similares
-
A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction
por: Haider, Saad, et al.
Publicado: (2015) -
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2017) -
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019) -
Application of transfer learning for cancer drug sensitivity prediction
por: Dhruba, Saugato Rahman, et al.
Publicado: (2018) -
Investigation of model stacking for drug sensitivity prediction
por: Matlock, Kevin, et al.
Publicado: (2018)