Cargando…
Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein
Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5′-end of truncated transfer RNA (tRNA) species in a Watson-Crick template–dependent manner. The reaction proceeds in two steps: the activation of the 5′-end by adenosine 5′-triphosphate (ATP)/guanosine 5′-triphosphate (GTP), foll...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820378/ https://www.ncbi.nlm.nih.gov/pubmed/27051866 http://dx.doi.org/10.1126/sciadv.1501397 |
_version_ | 1782425389827620864 |
---|---|
author | Kimura, Shoko Suzuki, Tateki Chen, Meirong Kato, Koji Yu, Jian Nakamura, Akiyoshi Tanaka, Isao Yao, Min |
author_facet | Kimura, Shoko Suzuki, Tateki Chen, Meirong Kato, Koji Yu, Jian Nakamura, Akiyoshi Tanaka, Isao Yao, Min |
author_sort | Kimura, Shoko |
collection | PubMed |
description | Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5′-end of truncated transfer RNA (tRNA) species in a Watson-Crick template–dependent manner. The reaction proceeds in two steps: the activation of the 5′-end by adenosine 5′-triphosphate (ATP)/guanosine 5′-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3′-5′ direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg(2+) ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3′-OH of the incoming nucleotide and the 5′-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3′-5′ elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA(His)-specific G(−1) addition enzyme. Each tRNA(His) binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNA(His) is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode. |
format | Online Article Text |
id | pubmed-4820378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48203782016-04-05 Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein Kimura, Shoko Suzuki, Tateki Chen, Meirong Kato, Koji Yu, Jian Nakamura, Akiyoshi Tanaka, Isao Yao, Min Sci Adv Research Articles Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5′-end of truncated transfer RNA (tRNA) species in a Watson-Crick template–dependent manner. The reaction proceeds in two steps: the activation of the 5′-end by adenosine 5′-triphosphate (ATP)/guanosine 5′-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3′-5′ direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg(2+) ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3′-OH of the incoming nucleotide and the 5′-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3′-5′ elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA(His)-specific G(−1) addition enzyme. Each tRNA(His) binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNA(His) is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode. American Association for the Advancement of Science 2016-03-25 /pmc/articles/PMC4820378/ /pubmed/27051866 http://dx.doi.org/10.1126/sciadv.1501397 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kimura, Shoko Suzuki, Tateki Chen, Meirong Kato, Koji Yu, Jian Nakamura, Akiyoshi Tanaka, Isao Yao, Min Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein |
title | Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein |
title_full | Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein |
title_fullStr | Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein |
title_full_unstemmed | Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein |
title_short | Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein |
title_sort | template-dependent nucleotide addition in the reverse (3′-5′) direction by thg1-like protein |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820378/ https://www.ncbi.nlm.nih.gov/pubmed/27051866 http://dx.doi.org/10.1126/sciadv.1501397 |
work_keys_str_mv | AT kimurashoko templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT suzukitateki templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT chenmeirong templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT katokoji templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT yujian templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT nakamuraakiyoshi templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT tanakaisao templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein AT yaomin templatedependentnucleotideadditioninthereverse35directionbythg1likeprotein |