Cargando…

Relationships of physiologically equivalent temperature and hospital admissions due to I30–I51 other forms of heart disease in Germany in 2009–2011

We aimed to understand relationships of the weather as biometeorological and hospital admissions due to other forms of heart disease by subtypes, which have been paid less attention, in a national setting in recent years. This is an ecological study. Ten percent of daily hospital admissions of the i...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiue, Ivy, Perkins, David R., Bearman, Nick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820499/
https://www.ncbi.nlm.nih.gov/pubmed/26620859
http://dx.doi.org/10.1007/s11356-015-5727-5
Descripción
Sumario:We aimed to understand relationships of the weather as biometeorological and hospital admissions due to other forms of heart disease by subtypes, which have been paid less attention, in a national setting in recent years. This is an ecological study. Ten percent of daily hospital admissions of the included hospitals (n = 1618) across Germany that were available between 1 January 2009 and 31 December 2011 (n = 5,235,600) were extracted from Statistisches Bundesamt, Germany. We identified I30–I51 other forms of heart disease by the International Classification of Diseases version 10 as the study outcomes. Daily weather data from 64 weather stations that have covered 13 German states, including air temperature, humidity, wind speed, cloud cover, radiation flux and vapour pressure, were obtained and generated into physiologically equivalent temperature (PET). Admissions due to other diseases of pericardium, nonrheumatic mitral valve disorders, nonrheumatic aortic valve disorders, cardiomyopathy, atrioventricular and left bundle-branch block, other conduction disorders, atrial fibrillation and flutter, and other cardiac arrhythmias peaked when PET was between 0 and 10 °C. Complications and ill-defined descriptions of heart disease admissions peaked at PET 0 °C. Cardiac arrest and heart failure admissions peaked when PET was between 0 and −10 °C while the rest did not vary significantly. A common drop of admissions was found when PET was above 10 °C. More medical resources could have been needed for heart health on days when PETs were <10 °C than on other days. Adaptation to such weather change for medical professionals and the general public would seem to be imperative.