Cargando…

MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters

Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regula...

Descripción completa

Detalles Bibliográficos
Autores principales: Hincapié, Ana-Sofía, Kujala, Jan, Mattout, Jérémie, Daligault, Sebastien, Delpuech, Claude, Mery, Domingo, Cosmelli, Diego, Jerbi, Karim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820599/
https://www.ncbi.nlm.nih.gov/pubmed/27092179
http://dx.doi.org/10.1155/2016/3979547
_version_ 1782425434752811008
author Hincapié, Ana-Sofía
Kujala, Jan
Mattout, Jérémie
Daligault, Sebastien
Delpuech, Claude
Mery, Domingo
Cosmelli, Diego
Jerbi, Karim
author_facet Hincapié, Ana-Sofía
Kujala, Jan
Mattout, Jérémie
Daligault, Sebastien
Delpuech, Claude
Mery, Domingo
Cosmelli, Diego
Jerbi, Karim
author_sort Hincapié, Ana-Sofía
collection PubMed
description Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.
format Online
Article
Text
id pubmed-4820599
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-48205992016-04-18 MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters Hincapié, Ana-Sofía Kujala, Jan Mattout, Jérémie Daligault, Sebastien Delpuech, Claude Mery, Domingo Cosmelli, Diego Jerbi, Karim Comput Intell Neurosci Research Article Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. Hindawi Publishing Corporation 2016 2016-03-22 /pmc/articles/PMC4820599/ /pubmed/27092179 http://dx.doi.org/10.1155/2016/3979547 Text en Copyright © 2016 Ana-Sofía Hincapié et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Hincapié, Ana-Sofía
Kujala, Jan
Mattout, Jérémie
Daligault, Sebastien
Delpuech, Claude
Mery, Domingo
Cosmelli, Diego
Jerbi, Karim
MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
title MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
title_full MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
title_fullStr MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
title_full_unstemmed MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
title_short MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
title_sort meg connectivity and power detections with minimum norm estimates require different regularization parameters
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820599/
https://www.ncbi.nlm.nih.gov/pubmed/27092179
http://dx.doi.org/10.1155/2016/3979547
work_keys_str_mv AT hincapieanasofia megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT kujalajan megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT mattoutjeremie megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT daligaultsebastien megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT delpuechclaude megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT merydomingo megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT cosmellidiego megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters
AT jerbikarim megconnectivityandpowerdetectionswithminimumnormestimatesrequiredifferentregularizationparameters