Cargando…
MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters
Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regula...
Autores principales: | Hincapié, Ana-Sofía, Kujala, Jan, Mattout, Jérémie, Daligault, Sebastien, Delpuech, Claude, Mery, Domingo, Cosmelli, Diego, Jerbi, Karim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820599/ https://www.ncbi.nlm.nih.gov/pubmed/27092179 http://dx.doi.org/10.1155/2016/3979547 |
Ejemplares similares
-
Canonical Source Reconstruction for MEG
por: Mattout, Jérémie, et al.
Publicado: (2007) -
Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics
por: Hauk, Olaf, et al.
Publicado: (2011) -
Can EEG and MEG detect signals from the human cerebellum?
por: Andersen, Lau M., et al.
Publicado: (2020) -
Minimum norm estimates in MEG can delineate the onset of interictal epileptic discharges: A comparison with ECoG findings()
por: Kanamori, Yuji, et al.
Publicado: (2013) -
Regularized gradient-projection methods for finding the minimum-norm solution of the constrained convex minimization problem
por: Tian, Ming, et al.
Publicado: (2017)