Cargando…
Temporal and phylogenetic evolution of the sauropod dinosaur body plan
The colossal size and body plan of sauropod dinosaurs are unparalleled in terrestrial vertebrates. However, to date, there have been only limited attempts to examine temporal and phylogenetic patterns in the sauropod bauplan. Here, we combine three-dimensional computational models with phylogenetic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821263/ https://www.ncbi.nlm.nih.gov/pubmed/27069652 http://dx.doi.org/10.1098/rsos.150636 |
_version_ | 1782425554504384512 |
---|---|
author | Bates, Karl T. Mannion, Philip D. Falkingham, Peter L. Brusatte, Stephen L. Hutchinson, John R. Otero, Alejandro Sellers, William I. Sullivan, Corwin Stevens, Kent A. Allen, Vivian |
author_facet | Bates, Karl T. Mannion, Philip D. Falkingham, Peter L. Brusatte, Stephen L. Hutchinson, John R. Otero, Alejandro Sellers, William I. Sullivan, Corwin Stevens, Kent A. Allen, Vivian |
author_sort | Bates, Karl T. |
collection | PubMed |
description | The colossal size and body plan of sauropod dinosaurs are unparalleled in terrestrial vertebrates. However, to date, there have been only limited attempts to examine temporal and phylogenetic patterns in the sauropod bauplan. Here, we combine three-dimensional computational models with phylogenetic reconstructions to quantify the evolution of whole-body shape and body segment properties across the sauropod radiation. Limitations associated with the absence of soft tissue preservation in fossils result in large error bars about mean absolute body shape predictions. However, applying any consistent skeleton : body volume ratio to all taxa does yield changes in body shape that appear concurrent with major macroevolutionary events in sauropod history. A caudad shift in centre-of-mass (CoM) in Middle Triassic Saurischia, associated with the evolution of bipedalism in various dinosaur lineages, was reversed in Late Triassic sauropodomorphs. A craniad CoM shift coincided with the evolution of quadrupedalism in the Late Triassic, followed by a more striking craniad shift in Late Jurassic–Cretaceous titanosauriforms, which included the largest sauropods. These craniad CoM shifts are strongly correlated with neck enlargement, a key innovation in sauropod evolution and pivotal to their gigantism. By creating a much larger feeding envelope, neck elongation is thought to have increased feeding efficiency and opened up trophic niches that were inaccessible to other herbivores. However, we find that relative neck size and CoM position are not strongly correlated with inferred feeding habits. Instead the craniad CoM positions of titanosauriforms appear closely linked with locomotion and environmental distributions, potentially contributing to the continued success of this group until the end-Cretaceous, with all other sauropods having gone extinct by the early Late Cretaceous. |
format | Online Article Text |
id | pubmed-4821263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-48212632016-04-11 Temporal and phylogenetic evolution of the sauropod dinosaur body plan Bates, Karl T. Mannion, Philip D. Falkingham, Peter L. Brusatte, Stephen L. Hutchinson, John R. Otero, Alejandro Sellers, William I. Sullivan, Corwin Stevens, Kent A. Allen, Vivian R Soc Open Sci Biology (Whole Organism) The colossal size and body plan of sauropod dinosaurs are unparalleled in terrestrial vertebrates. However, to date, there have been only limited attempts to examine temporal and phylogenetic patterns in the sauropod bauplan. Here, we combine three-dimensional computational models with phylogenetic reconstructions to quantify the evolution of whole-body shape and body segment properties across the sauropod radiation. Limitations associated with the absence of soft tissue preservation in fossils result in large error bars about mean absolute body shape predictions. However, applying any consistent skeleton : body volume ratio to all taxa does yield changes in body shape that appear concurrent with major macroevolutionary events in sauropod history. A caudad shift in centre-of-mass (CoM) in Middle Triassic Saurischia, associated with the evolution of bipedalism in various dinosaur lineages, was reversed in Late Triassic sauropodomorphs. A craniad CoM shift coincided with the evolution of quadrupedalism in the Late Triassic, followed by a more striking craniad shift in Late Jurassic–Cretaceous titanosauriforms, which included the largest sauropods. These craniad CoM shifts are strongly correlated with neck enlargement, a key innovation in sauropod evolution and pivotal to their gigantism. By creating a much larger feeding envelope, neck elongation is thought to have increased feeding efficiency and opened up trophic niches that were inaccessible to other herbivores. However, we find that relative neck size and CoM position are not strongly correlated with inferred feeding habits. Instead the craniad CoM positions of titanosauriforms appear closely linked with locomotion and environmental distributions, potentially contributing to the continued success of this group until the end-Cretaceous, with all other sauropods having gone extinct by the early Late Cretaceous. The Royal Society 2016-03-30 /pmc/articles/PMC4821263/ /pubmed/27069652 http://dx.doi.org/10.1098/rsos.150636 Text en http://creativecommons.org/licenses/by/4.0/ © 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Biology (Whole Organism) Bates, Karl T. Mannion, Philip D. Falkingham, Peter L. Brusatte, Stephen L. Hutchinson, John R. Otero, Alejandro Sellers, William I. Sullivan, Corwin Stevens, Kent A. Allen, Vivian Temporal and phylogenetic evolution of the sauropod dinosaur body plan |
title | Temporal and phylogenetic evolution of the sauropod dinosaur body plan |
title_full | Temporal and phylogenetic evolution of the sauropod dinosaur body plan |
title_fullStr | Temporal and phylogenetic evolution of the sauropod dinosaur body plan |
title_full_unstemmed | Temporal and phylogenetic evolution of the sauropod dinosaur body plan |
title_short | Temporal and phylogenetic evolution of the sauropod dinosaur body plan |
title_sort | temporal and phylogenetic evolution of the sauropod dinosaur body plan |
topic | Biology (Whole Organism) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821263/ https://www.ncbi.nlm.nih.gov/pubmed/27069652 http://dx.doi.org/10.1098/rsos.150636 |
work_keys_str_mv | AT bateskarlt temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT mannionphilipd temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT falkinghampeterl temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT brusattestephenl temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT hutchinsonjohnr temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT oteroalejandro temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT sellerswilliami temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT sullivancorwin temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT stevenskenta temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan AT allenvivian temporalandphylogeneticevolutionofthesauropoddinosaurbodyplan |