Cargando…
Transcription factor motif quality assessment requires systematic comparative analysis
Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a...
Autores principales: | Kibet, Caleb Kipkurui, Machanick, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821295/ https://www.ncbi.nlm.nih.gov/pubmed/27092243 http://dx.doi.org/10.12688/f1000research.7408.2 |
Ejemplares similares
-
A mentorship and incubation program using project-based learning to build a professional bioinformatics pipeline in Kenya
por: Nanjala, Ruth, et al.
Publicado: (2023) -
MEME-ChIP: motif analysis of large DNA datasets
por: Machanick, Philip, et al.
Publicado: (2011) -
Differential motif enrichment analysis of paired ChIP-seq experiments
por: Lesluyes, Tom, et al.
Publicado: (2014) -
The value of position-specific priors in motif discovery using MEME
por: Bailey, Timothy L, et al.
Publicado: (2010) -
Theoretical and empirical quality assessment of transcription factor-binding motifs
por: Medina-Rivera, Alejandra, et al.
Publicado: (2011)