Cargando…

Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment

INTRODUCTION: With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is “scaffolded DNA origami” to design and construct a nano-scale drug delivery system. Because of the global he...

Descripción completa

Detalles Bibliográficos
Autores principales: Ranjbar, Reza, Hafezi-Moghadam, Mohammad Sadegh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Electronic physician 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821297/
https://www.ncbi.nlm.nih.gov/pubmed/27053991
http://dx.doi.org/10.19082/1857
Descripción
Sumario:INTRODUCTION: With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is “scaffolded DNA origami” to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis, the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for TB treatment using the DNA origami method METHODS: In this study, we presented an experimental research on a DNA drug delivery system for treating Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with a CanDo server. RESULTS: Synthesizing the product was imaged using transmission electron microscopy after negative-staining by uranyl formate. CONCLUSION: We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system be used for other infectious diseases to target the pathogenic bacteria.