Cargando…
Learning Effective Connectivity Network Structure from fMRI Data Based on Artificial Immune Algorithm
Many approaches have been designed to extract brain effective connectivity from functional magnetic resonance imaging (fMRI) data. However, few of them can effectively identify the connectivity network structure due to different defects. In this paper, a new algorithm is developed to infer the effec...
Autores principales: | Ji, Junzhong, Liu, Jinduo, Liang, Peipeng, Zhang, Aidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821460/ https://www.ncbi.nlm.nih.gov/pubmed/27045295 http://dx.doi.org/10.1371/journal.pone.0152600 |
Ejemplares similares
-
Amortization Transformer for Brain Effective Connectivity Estimation from fMRI Data
por: Zhang, Zuozhen, et al.
Publicado: (2023) -
ACOEC-FD: Ant Colony Optimization for Learning Brain Effective Connectivity Networks From Functional MRI and Diffusion Tensor Imaging
por: Ji, Junzhong, et al.
Publicado: (2019) -
Learning Causal Biological Networks with Parallel Ant Colony Optimization Algorithm
por: Zhai, Jihao, et al.
Publicado: (2023) -
Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI
por: Zhao, Sinan, et al.
Publicado: (2017) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014)